Archive for July, 2021

Jul 22 2021

California Current Fish Surveys Resume with 3-Month Assessment of Sardine, Anchovy, and Mackerel

NOAA Ship Reuben Lasker, a fisheries survey vessel, departed San DIego in early July to assess coastal pelagic species such as sardine and anchovy. Credit: Paul Hillman/NOAA Fisheries


NOAA Fisheries has begun an ambitious assessment of small pelagic fish reaching from the Canadian border to the southern tip of the Baja Peninsula, in cooperation with Mexico, which will help determine how many fish can be caught off the West Coast.

The COVID-19 pandemic had idled surveys for sardine, anchovy, and other species of small coastal pelagic species (CPS) off the West Coast since 2019. Small pelagic species are important ecologically and provide food for larger fish, such as tunas. The new assessment resumes regular CPS  surveys by collecting data from NOAA Ship Reuben Lasker, commercial fishing vessels equipped with acoustic technology, and autonomous Saildrones.

The Lasker left San Diego on July 6, becoming the centerpiece of the 3-month survey. It will cover thousands of miles in U.S., and Mexican waters. NOAA Fisheries scientists are coordinating efforts with federal fisheries agencies in Mexico and Canada, providing a science foundation for future decisions on fishing levels and seasons.

“Organizing and coordinating this survey was a tremendous feat of collaboration,” said Kristen Koch, Director of the Southwest Fisheries Science Center in La Jolla, which is leading the survey. “Collecting data across all three countries will provide a valuable foundation for management of these important transboundary species.”

The Lasker will survey coastal pelagic fish along transects in the California Current, quantifying the fish with echosounders. These instruments include an advanced new model that can for the first time also measure the velocities of fish as they swim relative to the ship. The measurements will help to understand whether and how fish respond to survey vessels and if those reactions affect the quality of data on the numbers and distributions of fish.

Combined Vessels Extend Reach

The fishing industry vessels Lisa Marie and Long Beach Carnage will join the survey effort in waters closer to shore and shallower than Lasker can sample. This collaboration with the fishing industry expands sampling nearer the shore, more fully capturing the fish present in shallower waters. Meanwhile, autonomous Saildrones will improve the survey precision and accuracy by increasing sampling in areas with higher fish abundance and allow Lasker to cover a larger area.

“We’re making use of a combination of resources in ways that should yield complementary data and increase the information about seven populations of five fish species,” said David Demer, Advanced Survey Technology Program Lead at the Southwest Fisheries Science Center and Chief Scientist of the survey.

Anchovy are among the pelagic fish species the survey is assessing off the West Coast. Credit: Shutterstock

After surveying U.S. waters, Lasker for the first time will continue south to cover waters around the Baja California Peninsula in Mexico. Where Lasker concludes sampling, the Mexican research vessel Dr. Jorge Carranza Fraser will sample the Pacific and Gulf of California coasts of the Baja Peninsula. The two ships will use the same protocols so their data can be combined into more comprehensive analyses. Scientists from Mexico’s national fishery agency, the National Institute of Fisheries and Aquaculture, or INAPESCA, will join Lasker to foster cross-training and collaborations.

Dr. Pablo Roberto Arenas Fuentes, General Director of INAPESCA, highlighted that not since the late 1980s has such a combined international effort been assembled. He said this joint survey, using the same methodologies and data analysis between nations, truly represents something never done before on the scale of the California Current.

“The historic collaboration between INAPESCA and NOAA Fisheries represents the first time we will combine research methods to focus acoustic evaluation on the biomass of small pelagic fish,” he said. “This will generate continuous biological and environmental data along one of the most important coastal ecosystems of the North American continent.”

The survey will examine the abundance and distribution of the three subpopulations of Pacific sardine in the California Current, two of which are potentially fished by the United States and Mexico. The northern subpopulation historically occurred largely in Canadian and U.S. waters but declined to such low levels in recent years that the fisheries have been closed since 2015.

Less is known about another subpopulation that principally occupies waters off Mexico and Southern California. U.S. fishermen have shown interest in recent reports of increases in the proportion of the subpopulation in U.S. waters. The survey’s new reach into Mexico and the advanced acoustic technology aboard the vessels should provide more complete information on the distribution of the subpopulation, Koch said.

“The joint analysis will improve our knowledge of the distribution and abundance of these species at the regional level, which will support important fisheries,” said Dr. Pablo Arenas.

Survey Also Includes Anchovy and Mackerel

Additional information will also serve to assess the total abundance and extent of northern anchovy, and the jack and Pacific mackerel populations in the survey area. Anchovy have been extremely abundant in the California Current in recent years. Pelagic fish are known for boom-bust fluctuations in their populations.

A map outlines the survey transects for the vessels surveying small coastal pelagic species. Some of the northernmost transects were canceled but otherwise the solid lines show the course of the survey, with the magenta lines showing nearshore transects and blue lines showing the course of Saildrones. Credit: NOAA Fisheries

“Integrated surveys, such as this one, are essential in helping us understand how these populations change and shift over time so we can ensure that fisheries are sustainable,” said Josh Lindsay, fisheries biologist with NOAA Fisheries West Coast Region.

The Lasker, the Fraser, Saildrones, and the industry vessels all use advanced echosounders emitting sound waves to detect and map fish schools. Each of the crewed vessels then deploy either trawl or purse-seine nets to catch samples of the fish. The net catches identify the species of fish that reflect sound in each area, and their lengths, ages, and reproductive status.

In 2020, NOAA Fisheries’ Saltonstall-Kennedy Competitive Grants Program awarded funding to Ocean Gold Seafoods to help pay for the Lisa Marie to participate in the survey and provide more complete data. “The Coastal Pelagic Species industry feels strongly that it has a stake in robust fisheries management of this complex and dynamic assemblage, which can only be achieved with extensive data collection efforts,” industry supporters wrote in their application for the funding.

The cooperative research that combines NOAA Fisheries science and insight from fishermen provides long-term benefits for both. It is an area of increasing focus for NOAA Fisheries.

“The immense scale and scope of the survey is really significant,” said Joel Van Noord, a biologist with the California Wetfish Producers Association who will join the survey aboard Long Beach Carnage. He said the fishing fleet benefits from high-quality data on fish populations that help ensure they are managed sustainably, providing continuing benefits to fishing communities and the marine ecosystem.

Original post:

Jul 22 2021

Oceana sues NMFS over California sardine management

Alleging that U.S. West Coast fisheries managers are repeating mistakes of the past half-century, the environmental group Oceana is suing NMFS over its approval of the latest sardine management plan and demanding more action to rebuild the stock.

“Despite these hard lessons, NMFS repeats these management failures in Amendment 18,” states the group’s complaint, filed by the legal group Earthjustice on 14 July in the U.S. District Court for Northern California, naming U.S. Commerce Secretary Gina Raimondo, NOAA, and the fisheries agency.

Oceana claims NMFS should not have approved the Pacific Fishery Management Council’s amendment to the coastal pelagic species management plan, allowing managers to “chose a suite of already disproven, status-quo management measures that will keep this population at levels too low to support either the ecosystem or the primary fishery that relies on sardine for half a century or more.”

“Basically, we’re dealing with a rebuilding plan that’s not designed to rebuild,” said Geoff Shester, senior scientist and California campaign director for Oceana.

Environmental activists, managers, and fishermen have long been at odds over the U.S. sardine fishery, foundation of the historic California cannery industry that collapsed in the 1950s and stayed closed until 1974. Sardines were found in 2019 to be overfished, but fishing advocates say offshore surveys are missing large amounts of fish.

Managers now recognize that the sardine stock size is primarily driven by environmental factors, and that there is inadequacy of surveys used in assessments, according to Diane Pleschner-Steele, executive director of the California Wetfish Producers Association.

“Oceana just refuses to acknowledge the reality,” Pleschner-Steele said. “We’ve been arguing for years that the surveys don’t capture the [accurate number] of fish.”

The accusation of “status quo is misrepresenting management,” Pleschner-Steele said. The council and NMFS need flexibility to improve surveys and assessments, monitor environmental factors, and consider the fishing community needs with “the only reasonable rebuilding plan,” she said.

“It’s a balancing act between the biology of the fish and the well-being of the fishing community,” she said.

Managers have been using models based on northern and southern sardine stocks and linking most of the allowable biological catch to the northern stock, said Pleschner-Steele. But she said newer analysis has shown virtually all catches come from the southern stock, which also fuels a robust live-bait fishery supplying the recreational sector.

Shester said the fishery may account for 50 percent or more of the catch and needs a closer look, too. Back in the 1950’s and 1960’s, fisheries managers trying to guide a recovery gave wide allowances to the bait fishery, and “that was recognized as a big mistake,” he said.

There’s no question that sardine levels are driven by environmental conditions, but “the question is what does fishing do on top of that?” Shester said. “When the [sardines] move into these low levels, that’s not sustainable.”

Efforts to build cooperative surveys were sidetracked in 2020 with COVID-19, but work is underway again with the California Department of Fish and Wildlife on acoustic trawl and aerial surveys, said Pleschner-Steele. Work so far this year has found large numbers of fish, she said.

“I’m hoping we’ll be coming to an update of the stock assessment by the end of the year,” she said, that could get the fishery “out of overfished jail.”

Original post:

Reporting by Kirk Moore

Photo courtesy of NOAA

Jul 7 2021

New Study: Precautionary Catch Limits on Forage Fish Unlikely to Benefit Predators


July 6, 2021 — The following was released by the Science Center for Marine Fisheries:

A newly released study finds that, for many predator species, extra-precautionary management of forage fish is unlikely to bring additional benefits. How to manage forage fish sustainably, both by themselves and for the rest of the ecosystem, has become a much-discussed topic in fisheries management, with regulators of several forage fisheries beginning to adopt precautionary strategies on the premise that they will better provide for the needs of predator species including seabirds, marine mammals, and fish.

The study, from Drs. Chris Free of the University of California-Santa Barbara, Olaf Jensen of the University of Wisconsin-Madison, and Ray Hilborn of the University of Washington, examines decades of historical abundance data of both forage species and their predators, and uses mathematical models to determine to what extent predator populations benefited from increasing abundance of their forage fish prey. Of the 45 predator populations examined, only 6, or 13 percent, were positively influenced by extra forage.

“Our work suggests that the sustainable limits that we already employ are sufficient for maintaining forage fish abundance above the thresholds that are necessary for their predators,” said Dr. Free. “Predators are highly mobile, they have high diet flexibility, and they can go and look for forage fish in places where they’re doing well, switch species for species that are doing well, and have often evolved to breed in places where there’s high and stable forage fish abundance.”

The results have important implications for how strictly to manage forage fisheries. The study finds that, at least in forage fisheries that are already being well managed and are closely monitored, adopting additional precautionary measures will “rarely” provide any additional benefits to predator population growth. However, fishery managers who deal with less well-monitored fisheries may consider more precautionary strategies.

“In places of the world where we already have really strong, very effective fisheries management, additional limitations on forage fish catch are not likely to benefit their predators,” said Dr. Free.

“Management of forage fish populations should be based on data that are specific to that forage fish, and to their predators,” said Dr. Jensen. “When there aren’t sufficient data to conduct a population-specific analysis, it’s reasonable to manage forage fish populations for maximum sustainable yield, as we would other fish populations under the Magnuson-Stevens Act.”

According to the models used in the study, other environmental factors, such as water temperature, are more likely to influence predator populations. These results are consistent with previous efforts to examine the relationship between predator and prey populations.

“What we’ve done here that’s different from previous analyses is try to control for some of the other factors that influence predator population dynamics,” said Dr. Jensen. “In this case, we included in the models a covariate representing ocean temperature.”

SCEMFIS produced a video of the authors and independent experts discussing the results of the paper. Watch it here.

SCEMFIS utilizes academic and fisheries resources to address urgent scientific problems limiting sustainable fisheries. SCEMFIS develops methods, analytical and survey tools, datasets, and analytical approaches to improve sustainability of fisheries and reduce uncertainty in biomass estimates. SCEMFIS university partners, University of Southern Mississippi (lead institution), and Virginia Institute of Marine Science, College of William and Mary, are the academic sites. Collaborating scientists who provide specific expertise in finfish, shellfish, and marine mammal research, come from a wide range of academic institutions including Old Dominion University, Rutgers University, University of Massachusetts-Dartmouth, University of Maryland, and University of Rhode Island.

The need for the diverse services that SCEMFIS can provide to industry continues to grow, which has prompted a steady increase in the number of fishing industry partners. These services include immediate access to science expertise for stock assessment issues, rapid response to research priorities, and representation on stock assessment working groups. Targeted research leads to improvements in data collection, survey design, analytical tools, assessment models, and other needs to reduce uncertainty in stock status and improve reference point goals.

Original post: Saving Seafood | Sign up for our Daily News Updates from Saving Seafood.