Archive for the Research Category

Jan 17 2020

Fish populations around the world are improving

Fish populations around the world are improving

January 16, 2020 — The following was released by Sustainable Fisheries UW:

Let’s enjoy some unequivocal, inarguable good news: a paper published today in PNAS, Hilborn et al. 2020, shows that on average, scientifically-assessed fish populations around the world are healthy or improving. And, for fish populations that are not doing well, there is a clear roadmap to sustainability. With Australia on fire and scares of World War III, the start of 2020 and the new decade has been awful; hopefully Hilborn et al. 2020 can kickstart a decade of ocean optimism.

Hilborn et al. 2020 counters the perception that fish populations around the world are declining and the only solution is closing vast swaths of ocean to fishing. Instead, Hilborn et al. 2020 argues that increasing scientific, management, and enforcement capacity will lead to more abundant and sustainable oceans. The major takeaway of the paper is that fishery management works—when fisheries are managed, they are sustained. The key is following the science-to-management blueprint. Scientific data collection and fishery assessment comes first, then fishing regulation and enforcement of fishing policies. With the blueprint in place, most fisheries around the world are sustainable or improving.

The paper uses updates to the RAM Legacy Stock Assessment Database, a decades-long project to assemble data on fish populations that are scientifically assessed. As of 2019, the database contains data on 882 marine fish populations, representing about half of reported wild-caught seafood. In 2009, the database contained data on only 166, representing a much smaller proportion of global seafood. Researchers have spent the last 10 years adding to the database, and with today’s publication, update the global status of fish stocks. They found that, on average, fish populations are above target levels. Not every stock is doing well, but on average, things are much better than they were 2 decades ago. How nice: an environmental story where things are better now than they were in the past!

The paper describes the global status of fish stocks, but it also tells the story of fishery sustainability from the past 50 years.

Read the full story at Sustainable Fisheries UW


Original post: Copyright © 2020 Stove Boat LLC, All rights reserved.
Saving Seafood | 202-595-1212 | savingseafood.org

Jan 15 2020

Release — Fisheries management is actually working, global analysis shows

FROM: Michelle Ma
University of Washington
206-543-2580
mcma@uw.edu
(NOTE: Researcher contact information at end)

EMBARGOED BY THE PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES
For public release at 12 p.m. Pacific / 3 p.m. Eastern on Monday, Jan. 13, 2020

Fisheries management is actually working, global analysis shows

Nearly half of the fish caught worldwide are from stocks that are scientifically monitored and, on average, are increasing in abundance. Effective management appears to be the main reason these stocks are at sustainable levels or successfully rebuilding.

That is the main finding of an international project led by the University of Washington to compile and analyze data from fisheries around the world. The results were published Jan. 13 in the Proceedings of the National Academy of Sciences.

“There is a narrative that fish stocks are declining around the world, that fisheries management is failing and we need new solutions — and it’s totally wrong,” said lead author Ray Hilborn, a professor in the UW School of Aquatic and Fishery Sciences. “Fish stocks are not all declining around the world. They are increasing in many places, and we already know how to solve problems through effective fisheries management.”

The project builds on a decade-long international collaboration to assemble estimates of the status of fish stocks — or distinct populations of fish — around the world. This information helps scientists and managers know where overfishing is occurring, or where some areas could support even more fishing. Now the team’s database includes information on nearly half of the world’s fish catch, up from about 20% represented in the last compilation in 2009.

“The key is, we want to know how well we are doing, where we need to improve, and what the problems are,” Hilborn said. “Given that most countries are trying to provide long-term sustainable yield of their fisheries, we want to know where we are overfishing, and where there is potential for more yield in places we’re not fully exploiting.”

Over the past decade, the research team built a network of collaborators in countries and regions throughout the world, inputting their data on valuable fish populations in places such as the Mediterranean, Peru, Chile, Russia, Japan and northwest Africa. Now about 880 fish stocks are included in the database, giving a much more comprehensive picture worldwide of the health and status of fish populations.

Still, most of the fish stocks in South Asia and Southeast Asia do not have scientific estimates of health and status available. Fisheries in India, Indonesia and China alone represent 30% to 40% of the world’s fish catch that is essentially unassessed.

“There are still big gaps in the data and these gaps are more difficult to fill,” said co-author Ana Parma, a principal scientist at Argentina’s National Scientific and Technical Research Council and a member of The Nature Conservancy global board. “This is because the available information on smaller fisheries is more scattered, has not been standardized and is harder to collate, or because fisheries in many regions are not regularly monitored.”

The researchers paired information about fish stocks with recently published data on fisheries management activities in about 30 countries. This analysis found that more intense management led to healthy or improving fish stocks, while little to no management led to overfishing and poor stock status.

These results show that fisheries management works when applied, and the solution for sustaining fisheries around the world is implementing effective fisheries management, the authors explained.

“With the data we were able to assemble, we could test whether fisheries management allows stocks to recover. We found that, emphatically, the answer is yes,” said co-author Christopher Costello, a professor of environmental and resource economics at University of California, Santa Barbara, and a board member with Environmental Defense Fund. “This really gives credibility to the fishery managers and governments around the world that are willing to take strong actions.”

Fisheries management should be tailored to fit the characteristics of the different fisheries and the needs of specific countries and regions for it to be successful. Approaches that have been effective in many large-scale industrial fisheries in developed countries cannot be expected to work for small-scale fisheries, especially in regions with limited economic and technical resources and weak governance systems, Parma said.

The main goal should be to reduce the total fishing pressure when it is too high, and find ways to incentivize fishing fleets to value healthy fish stocks.

“There isn’t really a one-size-fits-all management approach,” Costello said. “We need to design the way we manage fisheries so that fishermen around the world have a long-term stake in the health of the ocean.”

Other co-authors are from University of Victoria, University of Cape Town, National Institute of Fisheries Research (Morocco), Rutgers University, Seikai National Fisheries Research Institute Japan, CSIRO Oceans and Atmosphere, Fisheries New Zealand, Wildlife Conservation Society, Marine and Freshwater Research Center (Argentina), European Commission, Galway-Mayo Institute of Technology, Center for the Study of Marine Systems, Sustainable Fisheries Partnership, The Nature Conservancy, and the Food and Agriculture Organization of the United Nations.

Hilborn and collaborators recently presented this work at the Food and Agriculture Organization of the United Nations’ International Symposium on Fisheries Sustainability in Rome.

The research was funded by the National Center for Ecological Analysis and Synthesis Science for Nature and People Partnership. Individual authors received funding from The Nature Conservancy, The Wildlife Conservation Society, the Walton Family Foundation, Environmental Defense Fund, the Richard C. and Lois M. Worthington Endowed Professorship in Fisheries Management and donations from 12 fishing companies.

###

For more information, contact Hilborn at rayh@uw.edu, Parma at anaparma@gmail.com and Costello at costello@bren.ucsb.edu.

More information is available at Sustainable Fisheries UW, an effort to communicate the science, policies and human dimensions of sustainable fisheries.

Jan 15 2020

Earth’s oceans are hotter than ever — and getting warmer faster

The world’s oceans hit their warmest level in recorded history in 2019, according to a study published Monday that provides more evidence that Earth is warming at an accelerated pace.

The analysis, which also found that ocean temperatures in the last decade have been the warmest on record, shows the impact of human-caused warming on the planet’s oceans and suggests that sea-level rise, ocean acidification and extreme weather events could worsen as the oceans continue to absorb so much heat.

“The pace of warming has increased about 500 percent since the late 1980s,” said one of the study’s authors, John Abraham, a professor of thermal sciences at the University of St. Thomas in St. Paul, Minnesota. “The findings, to be honest, were not unexpected. Warming is continuing, it has accelerated, and it is unabated. Unless we do something significant and quickly, it’s really dire news.”

Abraham and his colleagues found that the rate of ocean warming accelerated from 1987 to 2019 to nearly 4½ times the rate of warming from 1955 to 1986.

According to the study, published Monday in the journal Advances in Atmospheric Sciences, average ocean temperatures in 2019 were 0.075 degrees Celsius (0.135 degrees Fahrenheit) above the 1981-2019 average. While that may seem minuscule, it represents an enormous amount of heat spread out across the world’s oceans, according to the study’s lead author, Lijing Cheng, an associate professor at the Institute of Atmospheric Physics in Beijing.

“The amount of heat we have put in the world’s oceans in the past 25 years equals to 3.6 billion Hiroshima atom bomb explosions,” Cheng said in a statement.

The study, conducted by an international team of 14 scientists, found that oceans have absorbed more than 90 percent of the heat trapped on Earth from greenhouse gas emissions since 1970.

“Oceans are the biggest reservoir of heat and therefore the best indicator of climate change,” Abraham said. “If you want to know how fast the Earth is warming, look at the oceans.”

Scientists are worried by the trend because warmer oceans can increase severe weather and intensify storms.

“It’s like putting weather on steroids,” Johnson said. “We did a study a few years ago that showed Hurricane Harvey in Texas passed over a very warm body of water, and that greatly increased the amount of rainfall.”

Harvey unleashed more than 60 inches of rain over southeastern Texas in 2017, and scientists have said climate change will make storms rainier overall.

Warmer oceans also expand and melt ice, speeding the rise in sea levels and increasing the risk to coastal communities and low-lying infrastructure, said Nick Bond, a professor of atmospheric sciences at the University of Washington in Seattle, who wasn’t involved with the new study. According to the U.N. Intergovernmental Panel on Climate Change, average global sea levels could rise by 0.95 feet to 3.61 feet by the end of the century.

“From Miami Beach to Bangladesh — as sea levels continue to creep up, it’s just going to become less viable to live in these places,” Bond said.

He added that there are other significant societal implications, such as the effect that warming oceans may have on the chemistry and biology of the world’s oceans.

When carbon dioxide is absorbed and mixes with ocean water, chemical reactions make the water more acidic. Some sea creatures and ecosystems, such as corals, struggle with this type of acidification, but Bond said scientists don’t yet know the extent of the potential fallout.

“There are going to be winners and losers, but we don’t know how that will all play out,” he said. “It’s a very complicated system, and we don’t fully understand which species will have to shift their range, which ones may go extinct or which ones may prosper.”

Katie Matthews, chief scientist at Oceana, an ocean conservation organization in Washington, D.C., said ocean warming could have enormous impacts on fisheries around the world, particularly in the tropics.

“The tropics are the areas that have the largest number of people reliant on fish for nutrition, food security and livelihood,” she said. “It’s really unfortunate that the most vulnerable and at-risk populations are going to be the ones most affected.”

The study, which incorporated measurements from the National Oceanic and Atmospheric Administration, used data on ocean temperatures dating to the 1950s. The measurements included recordings of temperatures extending from the sea surface to depths of more than 6,500 feet.

Average ocean temperatures over the years have followed the warming trend, but Abraham said some of the most pronounced warming has taken place in the South Atlantic Ocean, in the Pacific Ocean off the coast of Japan, and in the waters south of Australia.

Abraham said he hopes the findings will spark climate action around the world.

“This isn’t a political issue,” he said. “This is a science issue, and our measurements are telling us that this is a problem and we need to take action.”


Dec 23 2019

California coastal waters rising in acidity at alarming rate, study finds

A commercial fishing boat heads out of Morro Bay. A study released Monday found that waters off the California coast are acidifying faster than the rest of the ocean. (Al Seib / Los Angeles Times)

 

Waters off the California coast are acidifying twice as fast as the global average, scientists found, threatening major fisheries and sounding the alarm that the ocean can absorb only so much more of the world’s carbon emissions.

A new study led by the National Oceanic and Atmospheric Administration also made an unexpected connection between acidification and a climate cycle known as the Pacific Decadal Oscillation — the same shifting forces that other scientists say have a played a big role in the higher and faster rates of sea level rise hitting California in recent years.

El Niño and La Niña cycles, researchers found, also add stress to these extreme changes in the ocean’s chemistry.

These findings come at a time when record amounts of emissions have already exacerbated the stress on the marine environment. When carbon dioxide mixes with seawater, it undergoes chemical reactions that increase the water’s acidity.

Across the globe, coral reefs are dying, oysters and clams are struggling to build their shells, and fish seem to be losing their sense of smell and direction. Harmful algal blooms are getting more toxic — and occurring more frequently. Researchers are barely keeping up with these new issues while still trying to understand what’s happening under the sea.

Scientists call it the other major, but less talked about, CO2 problem.

The ocean covers more than 70% of the Earth’s surface and has long been the unsung hero of climate change. It has absorbed more than a quarter of the carbon dioxide released by humans since the Industrial Revolution, and about 90% of the resulting heat — helping the air we breathe at the expense of a souring sea.

Here in California’s coastal backyard, some of the nation’s most economically valuable fisheries are also the most vulnerable. Scientists for years have worried that the West Coast would face some of the earliest, most severe changes in ocean carbon chemistry.

Many have noted how West Coast waters seemed to acidify faster, but there was little historical data to turn to. Ocean acidification has become a field of research only in recent decades, so information has been limited to what scientists have since started monitoring and discovering.

This study, published Monday in the journal Nature Geoscience, came up with a creative way to confirm these greater rates of acidification. Researchers collected and analyzed a specific type of shell on the seafloor — and used these data to reconstruct a 100-year history of acidification along the West Coast.

“This is the first time that we have any sort of record that takes it back to the beginning of the [last] century,” said Emily Osborne, a NOAA researcher and lead author of the study. “Prior to this, we didn’t have a time series that was long enough to really reveal the relationship between ocean acidification” and these climate cycles.

The study analyzed almost 2,000 shells of a tiny animal called foraminifera. Every day, these shells — about the size of a grain of sand — rain down onto the seafloor and are eventually covered by sediment.

Scientists took core samples from the Santa Barbara basin — where the seafloor is relatively undisturbed by worms and bottom-feeding fish — and used the pristine layers of sediment to create a vertical snapshot of the ocean’s history.

Seen under a microscope, these colorful spots are foraminifera shells taken from the mud of core samples off the California coast. Scientists studied these shells dating back 100 years to measure acidification rates in the ocean. (NOAA)

 

The more acidic the ocean, the more difficult it is for shellfish to build their shells. So using a microscope and other tools, the research team measured the changes in thickness of these shells and were able to estimate the ocean’s acidity level during the years that the foraminifera were alive.

“We can read the deposits like pages in a book,” said Osborne, a scientist for NOAA’s Ocean Acidification Program. “In Santa Barbara, there are just beautifully preserved laminated records of the seafloor that allow us to generate these high-resolution reconstructions.”

Image of a foraminifera shell magnified 650 times by a scanning electron microscope. (NOAA)

 

Using these modern calibrations, the scientists concluded that the waters off the California coast had a 0.21 decline in pH over a 100-year period dating back to 1895 (the lower the pH, the greater the acidity, according to the logarithmic pH scale of 0 to 14 ). This is more than double the decline — 0.1 pH — that scientists estimate the ocean has experienced on average worldwide.

From these records, Osborne could see clear changes whenever El Niño or other climate cycles shifted the ocean’s chemistry more dramatically. The data revealed an unexpected connection to the Pacific Decadal Oscillation, a warming and cooling cycle involving strong winds that pull warmer surface water on or offshore. The swings in upwelling of more nutrient- and carbon-rich waters alleviated or amplified the acidification.

This climate pattern has already been connected to shifts in sea level rise and other effects along the West Coast. More data and better understanding of these connections will help scientists adjust their models as they project what to expect in the future.

So there’s this bottom-up pressure from the oscillation, as well as the top-down stress of carbon dioxide from the atmosphere getting absorbed by surface water, Osborne said. “This makes the extremes even more extreme. It’s like a double whammy for this region of the world.”

Restoring the ocean’s kelp forests and other marine vegetation will help sequester some of this carbon, but ultimately, how much worse this all gets depends on the choices people make in the next decade. Efforts to rein in human-produced greenhouse gases play a significant role in temperature, wind patterns, acidification and how fast the sea will rise.

“While the ocean has served a very important role in mitigating climate change by absorbing CO2 from the atmosphere, there’s a capacity at which the ocean can’t absorb anymore,” Osborne said. “From this study, and so many other published studies, there’s no question that the answer is to curb our carbon emissions.”


Original post: https://www.latimes.com/california/story/2019-12-16/ocean-acidification-california

Sep 25 2019

The Intergovernmental Panel on Climate Change (IPCC) releases its Special Report on the Ocean and the Cryosphere in a Changing Climate

The new IPCC Special Report, released today,  is the first IPCC Report to focus on the role of the ocean in the global climate and the effects of climate change on the ocean. Ocean acidification is extensively covered throughout the report. A few OA-relevant excerpts from the Summary for Policymakers are cited below:

OBSERVED CHANGES AND IMPACTS

Observed Physical Changes

A2.5 The ocean has taken up between 20–30% (very likely) of total anthropogenic CO2 emissions since the 1980s causing further ocean acidification. Open ocean surface pH has declined by a very likely range of 0.017–0.027 pH units per decade since the late 1980s, with the decline in surface ocean pH very likely to have already emerged from background natural variability for more than 95% of the ocean surface area. {3.2.1; 5.2.2; Box 5.1; Figures SPM.1, SPM.2}

Observed Impacts on Ecosystems

A5.3 Eastern Boundary Upwelling Systems (EBUS) are amongst the most productive ocean ecosystems. Increasing ocean acidification and oxygen loss are negatively impacting two of the four major upwelling systems: the California Current and Humboldt Current (high confidence). Ocean acidification and decrease in oxygen level in the California Current upwelling system have altered ecosystem structure, with direct negative impacts on biomass production and species composition (medium confidence). {Box 5.3, Figure SPM.2}

A6.4 Warm-water coral reefs and rocky shores dominated by immobile, calcifying (e.g., shell and skeleton producing) organisms such as corals, barnacles and mussels, are currently impacted by extreme temperatures and ocean acidification (high confidence). Marine heatwaves have already resulted in large-scale coral bleaching events at increasing frequency (very high confidence) causing worldwide reef degradation since 1997, and recovery is slow (more than 15 years) if it occurs (high confidence). Prolonged periods of high environmental temperature and dehydration of the organisms pose high risk to rocky shore ecosystems (high confidence). {SR1.5; 5.3.4, 5.3.5, 6.4.2.1, Figure SPM.2}

PROJECTED CHANGES AND RISKS

Projected Physical Changes

B2.3 Continued carbon uptake by the ocean by 2100 is virtually certain to exacerbate ocean acidification. Open ocean surface pH is projected to decrease by around 0.3 pH units by 2081–2100, relative to 2006– 2015, under RCP8.5 (virtually certain). For RCP8.5, there are elevated risks for keystone aragonite shell-forming species due to crossing an aragonite stability threshold year-round in the Polar and sub-Polar Oceans by 2081–2100 (very likely). For RCP2.6, these conditions will be avoided this century (very likely), but some eastern boundary upwelling systems are projected to remain vulnerable (high confidence). {3.2.3, 5.2.2, Box 5.1, Box 5.3, Figure SPM.1}

B2.4 Climate conditions, unprecedented since the preindustrial period, are developing in the ocean, elevating risks for open ocean ecosystems. Surface acidification and warming have already emerged in the historical period (very likely). Oxygen loss between 100 and 600 m depth is projected to emerge over 59–80% of the ocean area by 2031– 2050 under RCP8.5 (very likely). The projected time of emergence for five primary drivers of marine ecosystem change (surface warming and acidification, oxygen loss, nitrate content and net primary production change) are all prior to 2100 for over 60% of the ocean area under RCP8.5 and over 30% under RCP2.6 (very likely). {Annex I: Glossary, Box 5.1, Box 5.1 Figure 1}

Projected Risks for Ecosystems

B5.3 Warming, ocean acidification, reduced seasonal sea ice extent and continued loss of multi-year sea ice are projected to impact polar marine ecosystems through direct and indirect effects on habitats, populations and their viability (medium confidence). The geographical range of Arctic marine species, including marine mammals, birds and fish is projected to contract, while the range of some sub-Arctic fish communities is projected to expand, further increasing pressure on high-Arctic species (medium confidence). In the Southern Ocean, the habitat of Antarctic krill, a key prey species for penguins, seals and whales, is projected to contract southwards under both RCP2.6 and RCP8.5 (medium confidence). {3.2.2, 3.2.3, 5.2.3}

B5.4 Ocean warming, oxygen loss, acidification and a decrease in flux of organic carbon from the surface to the deep ocean are projected to harm habitat-forming cold-water corals, which support high biodiversity, partly through decreased calcification, increased dissolution of skeletons, and bioerosion (medium confidence). Vulnerability and risks are highest where and when temperature and oxygen conditions both reach values outside species’ tolerance ranges (medium confidence). {Box 5.2, Figure SPM.3}

B6.1 All coastal ecosystems assessed are projected to face increasing risk level, from moderate to high risk under RCP2.6 to high to very high risk under RCP8.5 by 2100. Intertidal rocky shore ecosystems are projected to be at very high risk by 2100 under RCP8.5 (medium confidence) due to exposure to warming, especially during marine heatwaves, as well as to acidification, sea level rise, loss of calcifying species and biodiversity (high confidence). Ocean acidification challenges these ecosystems and further limits their habitat suitability (medium confidence) by inhibiting recovery through reduced calcification and enhanced bioerosion. The decline of kelp forests is projected to continue in temperate regions due to warming, particularly under the projected intensification of marine heatwaves, with high risk of local extinctions under RCP8.5 (medium confidence). {5.3, 5.3.5, 5.3.6, 5.3.7, 6.4.2, Figure SPM.3}

The full Report, as well as the Summary for Policymakers are available here.


Originally published: https://news-oceanacidification-icc.org/

Aug 6 2019

NOAA Releases 2018 Status of Stocks With New Emphasis on Environmental Impacts

The words “overfishing” and “overfished” are still used to describe seafood species with too high of a catch rate or too low of a population, but for the first time NOAA’s “Status of the Stocks 2018”, released last Friday, attributes impacts from global warming as causing changes in the sustainability status of fish stocks. It may be time to find new adjectives.

The bottom line for the report is the list, titled “Overfishing and Overfished Stocks As of December 31, 2018.” The good news in the 2018 report is that seven stocks came off the Overfishing List. But zero came off the Overfished List, five stocks were added to the Overfising List and eight stocks were added to the Overfished List.

The operative terms were defined by Alan Risenhoover, director of NOAA’s Office of Sustainable Fisheries, noted in Friday’s press conference.

“ ‘Overfishing’ is the rate of harvest, or the number of fish removed per year: one percent, ten percent, etc.,” Risenhoover said. “ ‘Overfished’ means that over time, overfishing creates a non-sustainable stock status for those species. It refers to overall population size.”

But it was environmental conditions that were listed as significant reasons for adding species to the lists, not what the fleets were doing.

“The total number of stocks listed as overfished increased, due to a number of factors including those outside the control of domestic fisheries management,” the report noted.

“The eight stocks added to the 2018 overfished list illustrate numerous challenges inherent in fisheries management,” the report author wrote.

“Environmental change, habitat degradation, and international fishing contributed to the status of the eight new overfished stocks. For example, relatively warm water conditions may be impacting the growth and reproduction of the cold-water Saint Matthew Island blue king crab. This stock has never been subject to overfishing and directed fishing for this crab has been prohibited since 2016.

“Warm ocean conditions, including the warm “Blob” in the northeast Pacific Ocean, reduced the number of spawning coho salmon returning to their natal rivers, and both Chinook and coho salmon have been impacted by habitat degradation caused by drought and lack of sufficient water for spawning,” the report noted.

“During the past 5 years, several of the fisheries for these salmon stocks have been declared fishery disasters under the MSA by the Secretary of Commerce due to factors beyond the control of fishery managers.”

NOAA partners with regional councils to manage the nation’s fisheries stocks, and works closely with other international bodies to manage stocks that are highly migratory and harvested globally. All management bodies use similar scientific principles to maintain sustainable populations, but very few include impacts of global warming or environmental changes, although almost all managers are aware of those impacts.

Managing fisheries on an ecosystem basis, rather than each species or species stock alone, was put into place by most U.S. management agencies in recent years. In Alaska, the effort to expand that to include weather systems, Arctic ice conditions, and stock migrations are underway.

Part of the problem is keeping up with rapidly changing warming ocean temperatures, especially in the north Atlantic and north Pacific. The nation’s most abundant fishing grounds in the Bering Sea are being impacted harder and sooner than many other productive areas because of the recent lack of sea ice and Arctic warming.

There are no models of how fisheries stocks react to these fundamental environmental shifts because the shifts have not happened on the current scale. Managers are aware of migration changes that may help some species and hurt others, depending on food availability, predators, and environmental conditions.

It is the biggest challenge NOAA Fisheries has faced perhaps in its history — how to manage stocks in a rapidly changing ocean.

For 2018, 43 fish stocks are on the Overfished List, with 28 on the Overfishing List. New England has the most Overfished species, with 15; the North Pacific has the least with 2 (St. Matthew Island and the Pribilof Island blue king crab stocks.)

After 9 years in a rebuilding plan with strict management, including a prohibition on landings, Gulf of Maine smooth skate was declared rebuilt in 2018.

“The renewed fishing opportunity and market for barndoor skate wings, following its rebuilt status, may lay the market foundation for a smooth skate fishery in the future,” the report noted.

Photo Credit: NOAA Fisheries

Peggy Parker
SeafoodNews.com
1-781-861-1441
peggyparker@urnerbarry.com


Original post: SeafoodNews.com — reposted with permission.

Aug 6 2019

Research cruise off California finds life lacking in parts of the ocean

The California Cooperative Oceanic Fisheries Investigation captures a trove of data about what the ocean is like now, and how it compares to conditions decades ago

Scripps CalCOFI scientists and technicians deploy the Conductivity Temperature Depth sensor rosette over the side of the research vessel, Bold Horizon. (Natalya Gallo)

In parts of the California Current this summer, the ocean was clear, azure, and almost empty.

The high water clarity, and low biological productivity, were some of the defining features that struck scientists returning from a cruise with the California Cooperative Oceanic Fisheries Investigation (CalCOFI) program, a 70-year study of West Coast waters.

Although the lack of life sounds ominous, scientists said it’s neither good, nor bad, but an interesting observation that will add to their knowledge of the California Current.

“I have never seen the water so blue in my life,” said Dave Griffith, a fisheries biologist with the National Oceanic and Atmospheric Administration. “It was beautiful. It looked like Lake Tahoe out there. You don’t have upwelling, which is what brings the nutrients up to the surface.”

A joint venture of Scripps Institution of Oceanography, the National Oceanic and Atmospheric Administration, and the California Department of Fish and Wildlife, CalCOFI was launched in 1949 as a way to understand the collapse of the once prolific sardine industry in California.

It soon expanded to become an exhaustive catalogue of fisheries, marine ecosystems and water chemistry. Its quarterly research cruises capture a trove of data about what the ocean is like now, and how it compares to conditions decades ago.

The ocean serves as a vast factory for manufacturing life, with plankton nourishing crustaceans and small fish, which in turn support marine mammals, seabirds, sharks and tuna. This summer, that production system seemed to be on pause, researchers said.

“Productivity conditions were very low, we weren’t capturing high biomass in any of our nets,” said Natalya Gallo, a postdoctoral researcher with the program, who volunteered on the cruise. “Marine mammal observations were low. That makes sense, because you have more animals when you have more food.”

Without the churning of nutrients from the ocean floor, the system stalls and ocean productivity — the amount of life produced at all those levels — declines.

That’s normal in the summer, when warmer water slows up-welling of nutrients from the sea floor, but researchers said ocean productivity seemed lower than usual, even for the season.

NOAA scientists and Scripps scientists work together to bring the Manta net back onboard, following a 15-minute sampling period of the ocean surface. Manta net samples often contained gelatinous organisms, copepods, and fish eggs and larvae.   (Natalya D. Gallo)

NOAA fisheries scientist, Dave Griffith, prepares to attach the Pairovet, a vertically sampling net, to the winch wire before its deployment. The Pairovet net is primarily used to sample anchovy eggs.   (Natalya D. Gallo)

NOAA fisheries scientist, Dave Griffith, holds a newly preserved zooplankton sample up to the light to get a better look at the amphipods and euphausiids in the sample.   (Natalya Gallo)

Chief scientist, Dan Schuller, prepares the Conductivity Temperature Depth sensor rosette for deployment as the crew leaves San Diego Bay and heads towards the first sampling station of CalCOFI Cruise BH1907.   (Natalya Gallo)

 

The ability to observe, measure and compare ocean chemistry and biology from year to year is the chief benefit of CalCOFI, which scientists said is the longest running set of marine data in the world.

“There was very little biomass at all, at all tropic levels, from (plankton) all the way up to marine mammals,” said CalCOFI Director Brice Siemons. “That is an observation, and we can put that in perspective in our time series, and compare it to all of the last 70 years.”

That’s why the 70-year time series of the California Current is so valuable, they said. The ability to maintain a running tally of ocean measurements allows researchers to sort out whether an event, such as this summer’s biological scarcity, is a short-time curiosity, or a long-time trend.

Over a 16-day cruise of the Southern California Bight and California Current, researchers took samples of water chemistry, plankton, fish eggs, marine mammal and seabird sightings, and other variables, at 70 research stations in a grid off the coast. Scientists with Scripps, in charge of oceanographic testing, lowered a device fitted with metal cannisters that measures water temperature and chemical properties at depth.

NOAA researchers study fisheries by sampling fish eggs and larvae, using four different types of nets. This time, it was slim pickings, particularly in the sea beyond the California Current — the open waters that scientists refer to as an “ocean desert.”

“This was exceptional,” Griffith said. “We weren’t seeing many eggs in the water, which is not uncommon, but there were areas where we were not seeing anything. It was pretty sparse.”

It’s unclear why the samples were so scanty as the ocean’s physical conditions didn’t seem out of the norm, said Dan Schuller, chief scientist for the cruise.

“There was nothing crazy anomalous in any of the parameters we were looking at,” he said. “Physical parameters — temperature, salinity, oxygen, chlorophyll — were pretty standard for a Southern California trip.”

Researchers said they’ll have to test their observations of low productivity against the data they get from analyzing their samples in the lab. It may turn out that there was more abundance of life than it appeared at first glance. And even if the ocean was less productive this summer, that could be part of cycles of boom and bust in marine populations.

Warm waters in recent years have suppressed some fish populations, but also led to favorable conditions for other species popular with fishermen.

“Fishes, especially near-shore commercial fishes — kelp bass, rock bass, the marine species that everybody likes to catch — they can’t particularly pick up and leave,” Siemens said.

Other migratory fish, such as yellowfin and bluefin tuna, are drawn to the balmy, near-shore waters, to the delight of San Diego fishermen.

“Somewhat counter-intuitively, when the water’s warm, and production is low, you get some of the best commercial fisheries, which is really good for our economy,” he said.

Although their biological samples were low overall, scientists did find creatures, including small crustaceans called copapods, as well as euphausiids, or krill, a shrimp-like crustacean. They pulled up chaetognaths, a transparent predatory worm that “should probably be featured in the next “Aliens” movie,” Gallo said.

They also found pyrosomes, a bizarre, colonial organism made up of many small tunicate worms, stitched into a translucent tube that can grow to an imposing 60 feet in length. Gallo said CalCOFI researchers found many smaller ones in their bongo nets — circular nylon nets shaped, as their name suggests, like bongo drums. The apparent abundance of these otherworldly creatures is exactly the sort of thing that CalCOFI data can put in perspective.

“Talking to some of the NOAA fisheries scientists, they said that pyrosomes used to be quite rate, and they didn’t see many,” Gallo said. “So that’s one of the things we can do with our data, and compare to (data from) the 1950s.”

Despite high waves, strong winds, storms and seasickness, the cruises are indelible experiences for the scientists on board. For Gallo, the chance to help write a chapter in a one of the most enduring stories of marine science was a professional milestone.

“I was out at sea with NOAA scientists who have been doing CalCOFI cruises since before I was born,” she said. “It’s almost three whole (generations of scientific) careers that have been dedicated to this time series that gives us this phenomenal understanding of the dynamics of the ecosystem off the West Coast, and how it has changed in the past, and how it may change in the future with climate change.”

For Griffith, a veteran of the CalCOFI cruises, the hard work and long hours are the price of perpetual wonder.

“The ocean is a very powerful thing,” he said. “It’s a very resilient source. It’s just a curiosity. We’ll see something different next year. We see fish populations explode and then collapse, but they never go away…. It’s fascinating to watch.”

Scripps CalCOFI scientists and technicians deploy the Conductivity Temperature Depth sensor rosette over the side of the research vessel, Bold Horizon. (Natalya Gallo)

At the nearshore station off San Pedro, NOAA fisheries scientist Amy Hays (left), prepares to recover the Bongo net while Scripps CalCOFI researchers take water samples from the Conductivity Temperature Depth sensor. (Natalya Gallo)

During transit between stations, NOAA fisheries scientists collect fish eggs and larvae and count and identify them to examine fish spawning patterns across the CalCOFI grid.

Angela Klemmedson, research associate for the Scripps CalCOFI group, runs at test to measure the oxygen concentration in discrete water samples collected with the CTD rosette.


Original post: https://www.sandiegouniontribune.com/news/environment/story/2019-08-04/calcofi-cruise-california-current-marine-science-anniversary-warm-ocean-scripps-ucsd-noaa

Jun 4 2019

How much U.S. Seafood is Imported?

According to the latest science, 35-38% of seafood consumed in the U.S. is produced domestically, meaning 62-65% is imported.

The commonly quoted statistic that “90% of seafood consumed in the United States is imported” is out of date and should stop being cited. In this post, I explain the origins of the 90% myth, the scientific paper that produced the updated numbers, and the implications for U.S. trade and seafood markets.

Where did the 90% statistic come from and why is the new estimate more accurate?

A lot of seafood farmed or caught in the United States is sent overseas for processing, then sent back. Due to varying trade codes that get lost in the shuffle of globalization, these processed seafood products are often mistakenly recorded as ‘imported,’ despite being of U.S. origin.

For example, pollock, the fish used in McDonald’s Filet-o-fish sandwich, is caught throughout U.S. waters near Alaska. Once onboard, a significant portion is sent to China (the U.S.’s largest seafood trade partner) to be cleaned, gutted, and processed into filets. After processing in China, the fish is sent back to the U.S. and sold in restaurants and grocery stores. Pollock is not a Chinese fish, but the trade codes used when sending them back from China signify them as Chinese-origin and they are recorded as imported or foreign seafood.

Recording fish caught in the U.S. but processed in China has led to a significant overestimation of Americans’ so-called ‘seafood deficit’, or the ratio of foreign to domestic seafood consumption in the U.S.

Unfortunately, the misleading 90% deficit statistic has become commonplace, mostly due to coverage of Oceana’s seafood fraud campaign that stoked consumer anxiety about imported seafood. Distorted import data had been taken at face value for several years because no one had pieced together the conversion factors that account for processing and return export/import—until three scientists, Jessica Gephart, Halley Froehlich, and Trevor Branch, published their work in PNAS in May 2019.

Knowing the conversion factor for seafood products caught or farmed in the U.S. is the key to accurately estimating the amount of domestic seafood processed abroad. Froehlich describes a conversion factor as a number that can be used to back-calculate a processed seafood item to its pre-processed weight. Basically, when pollock are sent back to the U.S. after being processed in China, a conversion factor can be applied to estimate how much fish was originally sent and domestic seafood statistics can be corrected. When U.S. seafood is processed abroad but consumed in the U.S., it should be counted as domestic seafood consumed domestically.

Scientists compiled live weight conversion factor data from NOAA, FAO, and CEPII; then, along with estimates for the amount of seafood processed abroad and imported again, an accurate percentage of domestic seafood consumed domestically was derived. The updated number (35-38%) is over three times higher than commonly reported.

Allison Horst (University of California, Santa Barbara, CA)

The vexing 90% statistic + Twitter = paper

The story of how this paper came to be is different than most other scientific collaborations. Both Gephart and Froehlich had tried to reconcile the 90% statistic in the past, but “neither of us completely followed the breadcrumbs because it was never a primary focus of our typically global research,” according to Froehlich.

“I first heard this statistic while working on my PhD and studying global seafood trade. The data I was looking at did not agree with this statistic, but I assumed I must be missing something and pushed it off,” said Gephart.

Years later, a discussion on twitter reignited their curiosity and got the researchers in touch. Froehlich explains, “It started with an article posted on Twitter around US imports and what should seemingly be a quite simple question from Trevor about the percent of exports. After all three of us engaged on Twitter (along with several other scientists in the mix), it was clear none of us seafood scientists in fisheries or aquaculture could really, fully trace the numbers completely.”

After connecting on Twitter, Gephart reached out to Froehlich and Branch and the three of them began working together to find the correct seafood consumption numbers. Twitter, for all its faults, is still valuable as a connector of people. You can still read through the original discussion from last year that led to the collaboration. Academic conversations that lead to published papers usually happen in hallways, closed meetings, and private conferences; ‘Science Twitter,’ a community of scientists sharing and conversing online, functions like a multidisciplinary scientific conference that everyone can attend. Twitter can stoke collaboration among scientists, but it also makes science more accessible to the public—an important feature when the science has significant political implications.

United States Seafood Trade

Misleading statistics in fisheries and marine conservation usually circulate with the ebb and flow of the news cycle, but the ‘90% imported seafood’ statistic has unique political implications. Gephart, Froehlich, and Branch noted in their paper:

In recent years, the former US Secretary of State, current US Secretary of Commerce, and members of Congress have all cited the number to call for new policy measures addressing seafood sustainability and dependence on foreign seafood

“I kept hearing this number [90%] repeated and it started to bother me that I couldn’t figure out where the number came from. Then, under the current administration, reducing the seafood trade deficit became a priority and this statistic was being used to support a range of policy changes. If this number was going to be used as support for proposed policies, it felt important to know where the number came from, whether it was right, and whether it is even a good indicator for sustainable fisheries policy,” Gephart told me.

Essentially, the misleading 90% statistic has been used to justify recent nationalist/protectionist shifts in U.S. foreign policy: President Trump has lamented the U.S.’s trade deficit with China since he began running for president in 2014. Now in power, he has escalated a trade war that has hit the seafood industry especially hard. For example, Maine lobster (a popular seafood item in China) is now at a 45% price disadvantage compared to Canadian lobster due to the U.S. and China raising tariffs on each other’s imports. Many in the Maine lobster fishery have been laid off as a result.

The most mind-numbing implications are the tariffs on “foreign” seafood from China. Remember the pollock example above? It is now potentially tariffed twice, “once going to China and another when it enters back into the states as a processed good,” explained Froehlich. “It’s a bit of cutting off the nose to spite the face for the U.S., which is not helping fishers, farmers, or consumers.”

Although it has received less attention and relief efforts than agriculture, US seafood is front and center in the trade war.

NOAA has said the U.S. will not tax domestic seafood on the way back from China, but there is currently no way it can differentiate it from other seafood. China has exempted seafood for processing and export, but a retaliatory tariff is a card they still hold.

We haven’t seen a misleading fishery statistic taken quite so far politically, but with correct statistics available now, hopefully the Trump administration will flout their history and work towards a policy that benefits working class people like those in the U.S. seafood industry.


Original post: https://sustainablefisheries-uw.org/fact-check/how-much-seafood-is-imported/

May 22 2019

Squid Research Update 2018-19

Methodological Overview


The California Wetfish Producer’s Association (CPWA) in collaboration with NOAA’s Southwest Fisheries Science Center (SWFSC) and the California Department of Fish and Wildlife has been conducting a long-term data collection program targeting California Market Squid paralarvae in Southern California since 2011, and in Monterey since 2014. Sampling sites occur at fixed and known squid spawning and aggregation sites and were selected through a collaborative process involving the squid fishing community, government managers, and independent scientists. These sites are in shallow waters, generally between 40-100 meters, over sandy substrate and often within one km from shore. Sampling effort targets the winter hatching season in southern California, sampling occurs in December, January, and February. Summer surveys are also conducted in SC and Monterey. Depending on funding availability, additional surveys are conducted in spring and autumn. To date, over 1,000 net tows have been collected during 42 survey efforts spanning nine years. Sampling is done on chartered fishing vessels and paralarvae are captured via bongo nets with a 505-micron mesh. Zooplankton volume and preservation, paralarval sorting and identification and other lab work are conducted at the SWFSC. Paralarval ageing is conducted with SWFSC personnel in an on-going project. Paralarval condition is measured by obtaining an average weight for paralarvae at a given station location, as well as measuring lengths of all individuals at a station location, or from 10 randomized individuals if >10 individuals occur at a station.

Overview – Early Winter 2018


Market squid paralarval abundance in Southern California (SC) during the winter of 2018 remained very low compared to the long-term mean, and especially compared to paralarval densities found during previous La Niña time periods (prior to 2015), indicating lingering effects from the historic 2015-16 El Niño. The 3-month mean SC paralarval density index (PDI) for the December 2018, and January and February, 2019 winter paralarval hatching season was 3.17 paralarvae per 1,000 m3 of filtered sea-water (± 19 SD). This is down from 7.43 (± 46.9) the previous hatching season (2017-18). The long-term SC winter mean PDI is 51.3 (± 342). Measurements of productivity, both zooplankton displacement volume (ZPDV) and surface chlorophyll (SCHL) declined from the previous year. ZPDV has steadily declined since the onset of the strong El Niño in 2014. Surface chlorophyll concentrations have recovered slightly from the El Niño, but are lower than last year, and still much lower than the previous period of high productivity (Fig. 1). Local sea surface temperature (SST) and the Ocean Niño Index (ONI) both saw cooling periods in 2017, but have warmed slightly during 2018 and 2019.

 

Late Winter Hatching Season, 2019


Paralarval abundance, temperature, and ocean productivity began the 2018-19 winter hatching season similarly to previous years, marked by very low abundance, warmer ocean temperatures, and reduced productivity. However, February, 2019, marked a dramatic change. A series of strong winter storms drove coastal upwelling, which cooled surface waters, increased ocean mixing, nutrient availability, zooplankton abundance, and yielded a significant increase in paralarval abundance (Table 1, Fig. 2). Zooplankton biomass and availability seems to be particularly important for market squid, likely due to the high energetic demands required by squids (O’Dor 1982). General Additive Models were used (also see Van Noord & Dorval 2017) to evaluate the importance of oceanographic variables on determining variability in paralarval density for the 2018-19 season. Sea surface temperature, ZPDV, SCHL, and four geographic variables (separating the coast from the Channel Islands and north from south at Santa Monica Bay) explained 48% of the variability in paralarval abundance. Sea surface temperature and ZPDV were particularly important in the model (Fig. 3). Greater paralarval density was associated with lower SST and moderate to high ZPDV.

 

Monterey Bay Area and Summer Sampling

The Monterey Bay Area was sampled in June, 2018 (n=15) and the paralarvae density index was 10.5 (± 7.18). This was the highest paralarvae abundance measured during the 2018-19 season. Southern California was sampled in June, 2018 and the PDI measured 0.45 (± 0.04). This was the second consecutive year that Monterey PDI values were the highest recorded in a given fishing year, indicating the population’s center of distribution may still be north following the anomalous warm water event during 2015-16, indicating that squid are seeking cooler ocean waters and greater food availability.


Jan 15 2019

Understanding Ocean Acidification Impacts to California’s Living Marine Resources – Ocean Science Trust

Helping the State visualize what’s at stake as oceans acidify



Now Available: http://www.oceansciencetrust.org/wp-content/uploads/2019/01/OST-OA-Impacts-Infographic-Final.pdf

A summary of the latest research on ocean acidification (OA) impacts to important species and ecosystems in California, from crab to squid, rockfish to urchins. This tool provides a tangible illustration of our current knowledge to support decision-makers in prioritizing efforts and resources to address OA impacts.

Ocean Science Trust, working closely with scientists at UC Davis Bodega Marine Lab, the Ocean Protection Council (OPC) and other partners, undertook this synthesis to help identify data gaps and prioritize where to allocate resources to further increase understanding of OA impacts to California fishery resources.

OVERVIEW: UNDERSTANDING OA RISKS TO CALIFORNIA’S LIVING MARINE RESOURCES

Ocean acidification is a complex issue that has the potential to alter marine food webs and ecosystems in California, with direct and indirect impacts to valuable marine fisheries and the aquaculture industry. Currently, state agencies working to understand the risks OA poses to coastal species, ecosystems, and human communities – an essential step to helping those at risk prepare for what’s at stake as coastal oceans continue to acidify.

VISUALIZING IMPACTS OF OA TO LIVING MARINE RESOURCES IN CALIFORNIA

As a first step towards illuminating potential natural resource management solutions, Ocean Science Trust worked closely with scientists at UC Davis Bodega Marine Lab, the Ocean Protection Council and other partners to demonstrate the potential impacts of OA on important species and ecosystems in California. We undertook a synthesis of current scientific understanding and developed communications material for use by resources managers. The species included in the synthesis represent a diverse subset of species considered as ocean climate indicators, commercially, recreationally, and/or ecologically important. This list was selected by the project team and vetted and augmented by OPC, CDFW, and aquaculture representatives.

WORKSHOP: DEFINING OCEAN ACIDIFICATION HOTSPOTS IN CALIFORNIA

Building on this assessment, Ocean Science Trust hosted a workshop in November 2018, to help managers and decision-makers incorporate OA impacts information into relevant management decisions, prioritize efforts to address these impacts, and determine where to allocate resources to further increase understanding. This workshop brought together managers, policy makers, and scientists to better understand the concept of OA hotspots, ensure it is usable by state decision-makers, and identify key gaps in data and information that inhibit action.

 

Findings from this work may also:

  • Help identify research and data gaps to understanding OA impacts to California’s fishery resources
  • Inform species selection for a modeling exercise to identify species vulnerability thresholds
  • Provide the groundwork for a quantitative OA or climate vulnerability assessment for California or the West Coast

Originally posted: http://www.oceansciencetrust.org/